Article ID Journal Published Year Pages File Type
2195384 Mechanisms of Development 2008 11 Pages PDF
Abstract
The localisation of the determinants of the body axis during Drosophila oogenesis is dependent on the microtubule (MT) cytoskeleton. Mutations in the actin binding proteins Profilin, Cappuccino (Capu) and Spire result in premature streaming of the cytoplasm and a reorganisation of the oocyte MT network. As a consequence, the localisation of axis determinants is abolished in these mutants. It is unclear how actin regulates the organisation of the MTs, or what the spatial relationship between these two cytoskeletal elements is. Here, we report a careful analysis of the oocyte cytoskeleton. We identify thick actin bundles at the oocyte cortex, in which the minus ends of the MTs are embedded. Disruption of these bundles results in cortical release of the MT minus ends, and premature onset of cytoplasmic streaming. Thus, our data indicate that the actin bundles anchor the MTs minus ends at the oocyte cortex, and thereby prevent streaming of the cytoplasm. We further show that actin bundle formation requires Profilin but not Capu and Spire. Thus, our results support a model in which Profilin acts in actin bundle nucleation, while Capu and Spire link the bundles to MTs. Finally, our data indicate how cytoplasmic streaming contributes to the reorganisation of the MT cytoskeleton. We show that the release of the MT minus ends from the cortex occurs independently of streaming, while the formation of MT bundles is streaming dependent.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, ,