Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2197482 | Molecular and Cellular Endocrinology | 2008 | 14 Pages |
A wide range of environmental contaminants can interfere with hormonal regulation in vertebrates. These endocrine disrupting chemicals (EDCs) are of high relevance for human and wildlife health, since endocrine signalling controls many essential physiological processes which impact on the individual's health, such as growth and development, stress response, and ultimately reproduction and population development. Small fish represent a cost-effective model for testing potential EDCs allowing the possibility to integrate from molecular to phenotypic and functional effects. We have comprehensively reviewed exposure-effect data from four different small model fish: zebrafish, medaka, fathead minnow, and the three-spined stickleback. The majority of available data refer to EDCs interfering with reproductive hormones. However, we have also included interactions with other hormone systems, particularly the thyroid hormones. We demonstrate that the available data clearly indicates the predictive potential of molecular biomarkers, supporting the development and regulatory application of simple molecular-based screening assays using small model fish for EDC testing.