Article ID Journal Published Year Pages File Type
2197791 Molecular and Cellular Endocrinology 2007 8 Pages PDF
Abstract

WISP3 is essential for maintaining cartilage integrity mainly by regulating the expression of collagen II, and mutations of WISP3 linked to spondyloepiphyseal dysplasia tarda with progressive arthropathy (SEDT-PA) can compromise this function and lead to cartilage loss. The aim of this study was to evaluate the effect of WISP3 on insulin-like growth factor (IGF) signaling in human chondrocytes, investigate whether WISP3 up-regulates collagen II through the IGF signaling pathway, and compare IGF signaling between wild-type and mutant WISP3. Experimental results suggest that WISP3 up-regulates collagen II expression and inhibits the activation of IGF-IR, IRS-1, and ERK kinase in human chondrocytes, and mutation of WISP3 augments IGF signaling in human chondrocytes. In addition to the IGF signaling pathway, WISP3 might up-regulate collagen II expression through an IGF-independent signaling cascade.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , , , , , ,