Article ID Journal Published Year Pages File Type
2198820 Molecular and Cellular Neuroscience 2009 7 Pages PDF
Abstract

Collybistin (Cb), a brain-specific guanine nucleotide exchange factor, has been shown to be essential for the gephyrin-dependent clustering of a specific set of GABAA receptors at inhibitory postsynaptic sites. Here, we examined whether the lack of Cb affects synaptic properties and neuronal activity in the intact hippocampus by monitoring network activity in the dentate gyrus of Cb-deficient mice after perforant-path stimulation in vivo. We found a decreased threshold for evoked population spikes of granule cells, indicating their increased excitability. Paired-pulse inhibition of the population spike, a measure for somatic GABAergic network inhibition, was enhanced. Mutant mice exhibited steeper slopes of field excitatory postsynaptic potentials, consistent with a reduced dendritic inhibition. In addition, the induction of long-term potentiation (LTP) was reduced. In line with these functional changes, the number of postsynaptic gephyrin and GABAA receptor clusters in the Cb-deficient dentate gyrus was significantly decreased. In conclusion, our data provide the first evidence that Cb-deficiency leads to significant changes of GABAergic inhibition, network excitability and synaptic plasticity in vivo.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , ,