Article ID Journal Published Year Pages File Type
2199030 Molecular and Cellular Neuroscience 2008 9 Pages PDF
Abstract

The voltage-gated sodium channel Nav1.6 plays unique roles in the nervous system, but its functional properties and neuromodulation are not as well established as for NaV1.2 channels. We found no significant differences in voltage-dependent activation or fast inactivation between NaV1.6 and NaV1.2 channels expressed in non-excitable cells. In contrast, the voltage dependence of slow inactivation was more positive for Nav1.6 channels, they conducted substantially larger persistent sodium currents than Nav1.2 channels, and they were much less sensitive to inhibition by phosphorylation by cAMP-dependent protein kinase and protein kinase C. Resurgent sodium current, a hallmark of Nav1.6 channels in neurons, was not observed for NaV1.6 expressed alone or with the auxiliary β4 subunit. The unique properties of NaV1.6 channels, together with the resurgent currents that they conduct in neurons, make these channels well-suited to provide the driving force for sustained repetitive firing, a crucial property of neurons.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , ,