Article ID Journal Published Year Pages File Type
2199165 Molecular and Cellular Neuroscience 2006 10 Pages PDF
Abstract

Antipsychotic drugs are the primary therapeutic treatment for schizophrenia. In addition to their dopaminergic/serotonergic function, atypical antipsychotics differ from conventional antipsychotics in the way they affect glutamatergic receptor function. A cellular correlate of this may be the modulation of dendritic spines (DS). Here, we demonstrate that in rat dissociated hippocampal neurons 1.0 μM clozapine administration increased DS-enriched protein spinophilin by 70%, increased post-synaptic protein shank1a puncta density by 26% and increased overall primary dendrite DS density by 59%. Filopodia and mushroom DS were particularly affected by clozapine. Conversely, 0.1 μM haloperidol decreased spinophilin protein by 40%, caused a 25% decrease in shank1a puncta and reduced the numbers of filopodia. In contrast, neither haloperidol nor clozapine induced any change in the levels of the pre-synaptic protein synapsin. This indicates that clozapine and haloperidol differentially regulate DS and post-synaptic plasticity. These findings may provide a molecular and cellular correlate to the superior therapeutic profile of clozapine when compared with haloperidol.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , ,