Article ID Journal Published Year Pages File Type
2199468 Molecular and Cellular Neuroscience 2007 11 Pages PDF
Abstract

Several types of CNS injury and various diseases are associated with the development of a glial scar. Astrocytes are major components of the glial scar. They are interconnected by gap junctions, with connexin43 (Cx43) being the most prominent channel protein. We applied a model of focal cerebral ischemia to study the spatio-temporal expression of glial fibrillary acidic protein, as well as of Cx43 mRNA and protein in gliotic tissue up to 60 days after injury. Reactive astrocytes enveloping the lesion up-regulated their Cx43 mRNA and protein. A band of reactive astrocytes filling in the lesion exhibited elevated Cx43 and showed a high degree of proliferation. Because of these findings, we hypothesize a role for Cx43 in glial scar formation, specifically in the proliferation of astrocytes.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , ,