Article ID Journal Published Year Pages File Type
2201238 Neurochemistry International 2010 6 Pages PDF
Abstract

Synaptic plasticity consists in a change in synaptic strength that is believed to be the basis of learning and memory. Synaptic plasticity has been for a very long period of time a hallmark of neurons. Recent advances in physiology of glial cells indicate that astrocyte and microglia possess all the features to participate and modulate the various form of synaptic plasticity. Indeed beside their respective supportive and immune functions an increasing number of study demonstrate that astrocytes and microglia express receptors for most neurotransmitters and release neuroactive substances that have been shown to modulate neuronal activity and synaptic plasticity. Because glial cells are all around synapses and release a wide variety of neuroactive molecule during physiological and pathological conditions, glial cells have been reported to modulate synaptic plasticity in many different ways. From change in synaptic coverage, to release of chemokines and cytokines up to dedicated “glio” transmitters release, glia were reported to affect synaptic scaling, homeostatic plasticity, metaplasticity, long-term potentiation and long-term depression.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, ,