Article ID Journal Published Year Pages File Type
220134 Journal of Electroanalytical Chemistry 2009 8 Pages PDF
Abstract

Removal of amaranth from aqueous solutions by Fe2+/H2O2 and Fe3+/H2O2 electro-oxidation systems was comparatively studied in an undivided electrochemical cell with anthraquinonedisulfonate (AQDS)/polypyrrole (PPy) composite film modified graphite as cathode. The modified cathode allowed the formation of strong oxidant hydroxyl radical (OH) in the medium via Fenton’s reaction between cathodically generated H2O2 and added or regenerated Fe2+. The effects of solution pH and iron catalyst concentration on dye degradation by the two systems were studied and compared. Degradation intermediates were analyzed by FTIR and GC–MS, and a tentative reaction pathway is proposed. Dye decay reaction always obeys pseudo-first-order kinetics for Fe3+/H2O2 process, while dye degradation follows a two-stage process with each stage obeying pseudo-first-order kinetics in the case of Fe2+/H2O2 system. In addition, the long-term stability and structural relaxation of the composite film during multiple experimental runs are also examined.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,