Article ID Journal Published Year Pages File Type
2201688 Neurochemistry International 2009 8 Pages PDF
Abstract

Neural progenitor cells play an essential role in both the developing embryonic nervous system and in the adult brain, where the capacity for self-renewal would be important for normal brain functions. In the present study, we used embryonic cortical neural progenitor cells to investigate the effects of trimethyltin chloride (TMT) on the survival of neural progenitor cells. In cultures of cortical neural progenitor cells, the formation of round neurospheres was observed in the presence of epidermal growth factor and basic fibroblast growth factor within 9 days in vitro. The neurospheres were then harvested for subsequent replating and culturing for assessment of cell viability in either the presence or absence of TMT at the concentration of 5 μM. Lasting exposure to TMT produced not only nuclear condensation in the cells in a time-dependent manner over a period of 6–24 h, but also the release of lactate dehydrogenase into the culture medium. Immunoblot and immunocytochemical analyses revealed that TMT had the ability to activate both caspase-3 and calpain, as well as to cause nuclear translocation of deoxyribonuclease II, which is located within cytoplasm in intact cells. Additionally, treatment with a calpain inhibitor [trans-epoxysuccinyl-l-leucylamido-(4-guanidino) butane] and a caspase inhibitor [Z-Val-Ala-Asp(OMe)-CH2F] produced a significant reduction in damaged cells induced by TMT. Taken together, our data indicate that neural progenitor cells are highly susceptible to TMT in undergoing cell death via the activation of 2 parallel pathways, ones involving calpain and the other, caspase-3.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , ,