Article ID Journal Published Year Pages File Type
2201932 Neurochemistry International 2008 6 Pages PDF
Abstract

Elevated activities of matrix metalloproteinases (MMPs) following ischemic stroke have been shown to mediate ischemic injury as well as neurovascular remodeling. The extracellular MMP inducer (EMMPRIN) is a 58-kDa cell surface glycoprotein, which has been known to play a key regulatory role for MMP activities. The roles of EMMPRIN in stroke injury are not clearly understood. In this study, we investigated changes of EMMPRIN in a mouse model of permanent focal cerebral ischemia, and examined potential association between EMMPRIN and MMP-9 expression. Adult male CD-1 mice were subjected to permanent focal ischemia by intraluminal occlusion of the left middle cerebral artery (MCAO) under anesthesia. EMMPRIN expression was markedly upregulated in the peri-infarct area at 2–7 days after ischemia compared to the contralateral non-ischemic hemisphere by Western blot analysis. Immunofluorescent double staining demonstrated that EMMPRIN signals co-localized with vwF-positive endothelial cells and GFAP-positive peri-vascular astrocytes. In contrast, EMMPRIN signal did not co-localize with NeuN-positive neurons, or MPO-positive neutrophils. Dual fluorescent staining revealed that EMMPRIN co-localized with MMP-9. Our data also demonstrated that increased EMMPRIN expression correlated with increased MMP-9 levels in a temporal manner.In summary, we report for the first time that EMMPRIN expression was significantly increased in a mouse model of permanent focal cerebral ischemia. The spatial and temporal association between increased EMMPRIN expression and elevated MMP-9 levels suggest that EMMPRIN may modulate MMP-9 activity, and participate in neurovascular remodeling after ischemic stroke.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , , ,