Article ID Journal Published Year Pages File Type
2201946 Neurochemistry International 2008 8 Pages PDF
Abstract

Sex-differences are observed in the GABAergic neurotransmitter system both at rest and following acute stress, yet the brain regions and functional implications of these differences are unknown. We examined sex-differences in the number of low- and high-affinity [3H]GABA binding sites in various brain regions of male and female mice and the effect of stress on such sex-differences. Male (n = 6) and female (n = 6) QS mice were exposed to a brief swim stress (3 min at 32 ± 1 °C) either individually or with cage-mates whilst control males (n = 6) and females (n = 6) remained undisturbed in the home cage. Using quantitative receptor autoradiography, sections of mouse brain were labelled with either 30 or 1000 nM [3H]GABA to label high or low affinity binding sites, respectively. Results indicated that males had more low affinity [3H]GABA binding sites in various forebrain cortical regions but less high affinity binding sites in many of these regions compared with females. Forced swim stress-induced rapid changes in forebrain GABA binding sites in females and group stressed males, suggesting a mechanism for rapid GABAergic adaptations. However the number of functional binding sites for GABA in certain forebrain regions was altered by stress in opposite directions in males and females, such that baseline sex-differences were removed following stress. These results exemplify sex-differences in brain chemical function and stress responses, and are of potential importance for understanding sex-differences in response to GABAergic compounds and disorders with sex and stress as predisposing factors.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , ,