Article ID Journal Published Year Pages File Type
2202188 Neurochemistry International 2006 6 Pages PDF
Abstract

Hepatic encephalopathy is a complex neuropsychiatric syndrome present in patients with chronic or acute liver disease. We review here some recent advances in the study, in animal models, of the mechanisms involved in the impairment in intellectual function in hepatic encephalopathy. These studies show that the function of the glutamate–nitric oxide–cGMP pathway is impaired in brain in vivo in rats with chronic hyperammonemia or liver failure and from patients died in hepatic encephalopathy. This impairment leads to a reduced extracellular concentration of cGMP in the cerebellum and is associated with reduced learning ability in these animal models. Moreover, learning ability of hyperammonemic rats was restored by increasing cGMP by: (1) continuous intracerebral administration of zaprinast, an inhibitor of the cGMP-degrading phosphodiesterase, (2) chronic oral administration of sildenafil, an inhibitor of the phosphodiesterase that crosses the blood–brain barrier and (3) continuous intracerebral administration of cGMP.The data summarized indicate that impairment of learning ability in rats with chronic liver failure or hyperammonemia is due to impairment of the glutamate–nitric oxide–cGMP pathway. Moreover, increasing extracellular cGMP by pharmacological means may be a new therapeutic approach to improve cognitive function in patients with hepatic encephalopathy.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , , ,