Article ID Journal Published Year Pages File Type
2204501 Trends in Cell Biology 2013 9 Pages PDF
Abstract

Prions and amyloids are often associated with disease, but related mechanisms provide beneficial functions in nature. Prion-like mechanisms (PriLiMs) are found from bacteria to humans, where they alter the biological and physical properties of prion-like proteins. We have proposed that prions can serve as heritable bet-hedging devices for diversifying microbial phenotypes. Other, more dynamic proteinaceous complexes may be governed by similar self-templating conformational switches. Additional PriLiMs continue to be identified and many share features of self-templating protein structure (including amyloids) and dependence on chaperone proteins. Here, we discuss several PriLiMs and their functions, intending to spur discussion and collaboration on the subject of beneficial prion-like behaviors.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, ,