Article ID Journal Published Year Pages File Type
222228 Journal of Environmental Chemical Engineering 2013 10 Pages PDF
Abstract

Hydrogel was successfully synthesised by incorporating acrylic acid (AA) as copper ion (Cu2+) chelator into the thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) via emulsion polymerisation. The stimuli-responsive properties and the Cu2+ adsorption capacity of the cross-linked PNIPAM-co-AA hydrogels were evaluated. The hydrodynamic diameter of the PNIPAM-co-AA hydrogel particles was studied using dynamic light scattering (DLS) method. It was found that the volume phase transition temperature (VPTT) of hydrogels shifted from 32 °C to 27 °C after Cu2+ adsorption and the hydrodynamic diameter decreased with increasing temperature. The size of the PNIPAM-co-AA hydrogel particles and the incorporation of AA functional group were confirmed by transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR), respectively. Equilibrium isotherms, kinetic and thermodynamic studies have also been evaluated for its copper ions adsorption. The adsorption capacity (qm) of PNIPAM-co-AA hydrogels for Cu2+ was found to be 67.25 mg g−1 with best fit to Langmuir isotherm and the adsorption mechanism follows the pseudo-second-order model. Gibbs free energy analysis shows that the adsorption was spontaneous and it exhibited endothermic chemisorption properties. Adsorption of copper ions on PNIPAM-co-AA hydrogels was found to be more thermodynamically driven.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,