Article ID Journal Published Year Pages File Type
225676 Journal of Food Engineering 2007 8 Pages PDF
Abstract

The speed of sound was measured in solutions of sucrose (0–70 wt/vol%), glycerol (0–30 wt/vol%) and orange juice (0–40 solids wt/vol%) as a function of temperature (10 °C to −13 °C). The velocity (c) in the unfrozen solutions, including the supercooled samples, could be modeled as a simple linear function of temperature (T, °C) and composition (x, wt/vol%): c = cw + kxx + kTT where cw is the speed of sound in water at 0 °C, and kx and kT are solute-dependant constants. There was a large increase in ultrasonic velocity corresponding to freezing in these samples (e.g., an unfrozen 10% sucrose solution has a speed of sound of 1416 m s−1 at −5 °C while a similar frozen solution has a velocity of 1983 m s−1). The ice content was estimated from phase diagrams of similar samples and was a linear function of the change in ultrasonic velocity upon freezing for samples <8 °C. Some details of the effects of ice microstructure and possible theoretical approaches to its effects on ultrasonic properties are also discussed.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,