Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
226873 | Journal of Industrial and Engineering Chemistry | 2016 | 5 Pages |
Flower-like shaped rutile-rich TiO2 nanoparticles were synthesized by the reaction of HCl with titanium diisopropoxide bis(acetylacetonate) immobilized in reverse micelles composed of oleic acid, water, and xylene. Brunauer Emmett Teller (BET) analysis showed large surface area of the synthesized TiO2 nanoparticles of 177.8 m2/g. We investigated the effect of the concentration of Ti precursor and role of oleic acid in the formation of TiO2 nanoparticles. Rutile-rich TiO2 nanoparticles with large surface area showed better photocatalytic activity in decomposing methyl orange under visible-light irradiation than anatase and rutile mixed phase TiO2 particles.
Graphical abstractFlower-like shaped rutile-rich TiO2 nanoparticles having enhanced activity in decomposing methyl orange under visible-light irradiation were synthesized by the reaction of HCl with titanium diisopropoxide bis(acetylacetonate) immobilized in reverse micelles composed of oleic acid, water, and xylene.Figure optionsDownload full-size imageDownload as PowerPoint slide