Article ID Journal Published Year Pages File Type
227331 Journal of Industrial and Engineering Chemistry 2014 7 Pages PDF
Abstract

A batch electrocoagulation system has been evaluated for the removal of Cr(VI) from brackish groundwater under different operating conditions. The influence of electrode type, applied current density, initial pH, initial chromium concentration, conductivity and temperature were evaluated. The experimental results indicated that chromium removal increased with increasing the applied current density and conductivity. The efficiency of different electrode arrangements (iron, aluminum) was also assessed, and indicated that Fe–Fe electrode pair was the most efficient arrangement and was able to achieve 100% Cr removal at an electrocoagulation time of 5 min, a current density of 7.94 mA/cm2, and pH of 8 at room temperature 25 °C. The generated sludge for the iron electrodes was characterized using EDS, X-ray fluorescence (XRF) and FE-SEM. The analysis confirmed the formation and precipitation of Fe(OH)3 and Cr(OH)3 as solids. Overall, the study affirmed that electrocoagulation is a reliable technique for the purification of groundwater with an estimated energy consumption of 0.6 kWh/m3.

Graphical abstractChromium removal at different initial concentrations.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,