Article ID Journal Published Year Pages File Type
227755 Journal of Industrial and Engineering Chemistry 2008 5 Pages PDF
Abstract

The nonrandom lattice equation of state with hydrogen bonding (NLF-HB EOS) was examined for the correlation of liquid–liquid equilibria (LLE) for binary alcohol and hydrocarbon mixture in a wide pressure range. For hydrocarbon + alcohol mixtures the consideration of a hydrogen-bonding term in the lattice equation of state clearly improves the prediction for vapor–liquid equilibrium (VLE) as shown in previous works, but the prediction of LLE is still in question. In this paper, LLE data for alcohols (methanol and ethanol) + hydrocarbons (n-hexane to n-hexadecane) were correlated by NLF-HB EOS and results were compared with a cubic equation of state (Peng–Robinson EOS with the T–K Wilson based GE model). Both equations of state showed similar degree of accuracies but with different number of adjustable parameters. The Peng–Robinson EOS based approach requires six temperature dependent coefficients for accurate calculation whereas NLF-HB EOS requires only two temperature dependent coefficients. The effects of varying hydrogen-bonding energies for NLF-HB EOS are discussed.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,