Article ID Journal Published Year Pages File Type
228047 Journal of Industrial and Engineering Chemistry 2013 9 Pages PDF
Abstract

Solutions of methyl orange azo dye were degraded by electrochemical oxidation using a 3 L flow plant with a boron-doped diamond (BDD)/stainless steel cell operating at constant current density, ambient temperature and liquid flow rate of 12 L min−1. A 23 factorial design considering the applied current density, azo dye concentration and electrolysis time as variable independents was used to analyze the process by response surface methodology. LC–MS analysis revealed the formation of seven oxidation products from the cleavage of the NN group of the dye, followed by deamination, formation of a nitro group and/or desulfonation of the resulting aromatics.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , , ,