Article ID Journal Published Year Pages File Type
228109 Journal of Industrial and Engineering Chemistry 2013 7 Pages PDF
Abstract

In this work lipase from Candida rugosa was adsorbed on unmodified surface of multi walled carbon nanotubes (raw-MWCNT). The effects of immobilization time, initial enzyme concentration and buffer ionic strength on enzyme loading and activity of immobilized preparations were tested. High loadings are attained. The immobilized enzyme obtained at lowest initial enzyme concentration and high ionic strength retained 85% of initial enzyme activity. It is assumed that immobilization on hydrophobic surface led to conformational changes that resulted in the adsorption of lipase in active conformation. Immobilized preparations were characterized, with FT-IR spectroscopy, AFM, and cyclic voltammetry.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , ,