Article ID Journal Published Year Pages File Type
228333 Journal of Industrial and Engineering Chemistry 2010 5 Pages PDF
Abstract

1 m3 of methane hydrate can be decomposed into a maximum of 216 m3 of methane gas under standard conditions. If these characteristics of hydrates are utilized in the opposite sense, natural gas can be fixed into water in the form of a hydrate solid. Therefore, the use of hydrates is considered to be a great way to transport and store natural gas in large quantities. However, when methane hydrate is formed artificially, the amount of gas that is consumed is relatively low, due to the slow reaction rate between water and methane gas. Therefore, for practical purposes in the application, the present investigation focuses on increasing the rate of formation of the hydrate and the amount of gas consumed by adding multi-walled carbon nanotubes (MWCNTs) to pure water. The results show that when 0.004 wt% of multi-walled carbon nanotubes was added to pure water, the amount of gas consumed was about 300% higher than that in pure water and the hydrate formation time decreased at a low subcooling temperature.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,