Article ID Journal Published Year Pages File Type
229292 Journal of Industrial and Engineering Chemistry 2009 6 Pages PDF
Abstract

For the synthesis of biomass-based resol resins, cornstalk powders were liquefied in a hot-compressed phenol–water (1:4, wt./wt.) medium at 300–350 °C. It was observed that essentially no phenol was reacted with the cornstalk degradation intermediates during the liquefaction process. The cornstalk-derived bio-oils contained oligomers of phenol and substituted phenols, originated primarily from the lignin component of the cornstalk feedstock. Using the cornstalk-derived bio-oils, resol resins were readily synthesized under the catalysis of sodium hydroxide. The biomass-derived resol resins were brown viscous liquids, possessing broad molecular weight distributions. In comparison with those of a conventional phenol resol resin, the properties of the bio-based resins were characterized by GPC, FTIR, DSC and TGA. The as-synthesized bio-oil resol resin exhibited typical properties of a thermosetting phenol–formaldehyde resin, e.g., exothermic curing temperatures at about 150–160 °C, and an acceptable residual carbon yield of ca 56% at 700 °C for the cured material.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,