Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
229497 | Journal of Saudi Chemical Society | 2014 | 7 Pages |
The ground state structures of 5,5″-diperfluorophenyl-2,2′:5′,2″:5″,2‴-quaterthiophene (1), 5,5′-bis{1-[4-(thien-2-yl)perfluorophenyl]}-2,2′-dithiophene (2), 4,4′-bis[5-(2,2′-dithiophenyl)]-perfluorobiphenyl (3), 5,5″-diperfluorophenyl-2,2′:5′,2″-tertthiophene (4), 5,5′-diperfluorophenyl-2,2′-dihiophene (5), and 5,5-diperfluorophenylthiophene (6) have been optimized at the B3LYP/6-31G(d), B3LYP/6-31G(d,p), PBE0/6-31G(d), and PBE0/6-31G(d,p) level of theories. The B3LYP/6-31+G(d) and PBE0/6-31+G(d) level of theories have been applied to investigate the absorption spectra. The PBE0 functional is good to predict the C–S bond lengths while the C–F bond lengths are good envisaged with B3LYP functional. The increment of thiophene rings between two perfluoroarene rings leads to red shift in absorption spectra. The electron affinities are energetically destabilized while energetic stabilization of the radical-cation increases by decreasing the thiophene rings from four to one. The perfluoroarene rings leads to enhance the electron injection.