Article ID Journal Published Year Pages File Type
231336 The Journal of Supercritical Fluids 2010 9 Pages PDF
Abstract

Reactions of d-xylose were investigated with a flow apparatus in water at high temperatures (350 and 400 °C) and high pressures (40–100 MPa) to elucidate the reaction pathway and reaction kinetics. The products obtained from the reaction of d-xylose were furfural, d-xylulose, glyceraldehyde, glycolaldehyde, dihydroxyacetone, pyruvaldehyde, lactic acid and formaldehyde. Experimental results showed evidence of a dehydration reaction pathway, a retro-aldol reaction pathway and a Lobry de Bruyn-Alberta van Ekenstein (LBET) pathway from d-xylulose. The proposed reaction pathway and kinetic model were in accord with the experimental results. The kinetic constants showed dependence with water density (pressure). At 400 °C and water density of 0.52 g/cm3 at 40 MPa, the reaction from d-xylose to d-xylulose occurred by the LBET pathway with the reverse reaction being negligible. At 400 °C, increasing the water density from 0.52 to 0.69 g/cm3 decreased the kinetic rate constant of the forward LBET pathway and increased that of the reverse LBET pathway. The kinetic rate constant of the dehydration of d-xylulose to furfural increased with increasing water density at constant temperature. The kinetic rate constant of the retro-aldol reaction of d-xylose increased, and the retro-aldol reaction of d-xylulose decreased with increasing water density at 400 °C.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,