Article ID Journal Published Year Pages File Type
232005 The Journal of Supercritical Fluids 2008 7 Pages PDF
Abstract

The performance of a Kenics static mixer as a heat-transfer device for supercritical carbon dioxide (CO2) flow is studied and compared with conventional tube-in-tube heat exchangers. Measurements were carried out at pressures ranging from 8 to 21 MPa, temperatures from 283 to 323 K, and mass flowrates from 2 to 15 kg/h. The corresponding Reynolds and Prandtl numbers, at bulk conditions, ranged between 103 and 2 × 104 and between 2 and 7, respectively. The temperature increase experienced by the supercritical CO2 stream varied between 10 and 35 K. The heat fluxes obtained with the static mixer are one order of magnitude higher than the ones observed with a tube-in-tube heat exchanger for the same set of operating conditions. The heat-transfer enhancement is caused by the cross-sectional mixing of the fluid and to a lesser extent by conduction across the metallic mixing elements. Heat-transfer is also affected by temperature-induced variation of physical properties, especially in the pseudocritical region of the fluid. From the experimental data, a correlation was developed for convective heat-transfer to supercritical CO2 in terms of the Nusselt number.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,