Article ID Journal Published Year Pages File Type
232059 The Journal of Supercritical Fluids 2007 10 Pages PDF
Abstract

A new two-parameter RTD model based on the one-parameter laminar flow model has been proposed. The model, ‘n-laminar model’, is defined in time domain and considers a generalization of the parabolic velocity profile across radial direction; its mathematical deduction is presented in text. The model has been validated for both supercritical and near critical CO2 and near critical H2O. It is shown how the proposed two-parameter model works much better than the classical models with one, two or even three parameters for both CO2 and H2O under near critical and supercritical conditions. A range of experiments at 10–30 MPa and 100–250 °C at different flowrates are presented. Traditional models, such as n-tanks in series or a combination of n-tanks with a plug flow resulted in a poor explanation of the behaviour in most cases with average errors over 100%. Laminar flow has shown the best results within all these classical models, with a mean average error of 50%. The proposed model predicts with an average error of less than 10–20%. Thus the generalization of the laminar flow to n-laminar is a significant improvement over traditional models. This model is the first successful attempt for the modelling of RTD curves at high pressures.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , ,