Article ID Journal Published Year Pages File Type
233921 Minerals Engineering 2010 7 Pages PDF
Abstract

The effect of chloride on chalcopyrite leaching has been investigated by performing batch leaching tests with three kinds of leaching solutions and using Hiroyoshi’s model, which suggests that a zone of rapid leaching exists between the critical potential (Ec, equilibrium redox potential for the reduction of CuFeS2 to Cu2S) and the oxidation potential (Eox, equilibrium redox potential for the oxidation of Cu2S). The results of the leaching tests show that the leaching rate in hydrochloric acid solution is the fastest and that the relationship between the Cu leaching rate and oxidation–reduction potential (ORP) follows Hiroyoshi’s model. Thermodynamic calculations indicate that, with an increase in the chloride concentration, the concentration of cuprous ions increases as the chlorocuprate(I) complex ions are formed and the contribution of cuprous ions to the critical potential is greater than that of cupric ions, even though the concentration of cuprous ions is lower than that of cupric ions. This fact suggests that the formation of chlorocuprate(I) ions in a chloride solution may improve the chalcopyrite leaching rate by increasing the critical potential.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , ,