Article ID Journal Published Year Pages File Type
234916 Powder Technology 2016 10 Pages PDF
Abstract

•Analysis of van der Waals cut-off distance on collision parameters•Analytical solution for critical velocity versus cut-off distance•Finding criteria for rebound and adhesion of particles colliding a surface•Comparison of simulation to experimental data

Rapid advancement in computer technology makes it possible to perform simulations of large particulate systems using Discrete Element Method (DEM). However, it is still a challenge to adjust the DEM simulation parameters, especially the interparticle forces, in order to obtain rational results. Many of these forces diverge as the distance between particle surfaces approaches zero. Therefore, a cut-off distance needs to be considered in order to avoid such a problem. This work presents the results of the computational analysis of the influence of the cut-off distance, which is required to avoid the divergence of the van der Waals force, on the collision of a single particle against a flat surface. Hence, the effect of the cut-off distance on the coefficient of restitution, collision duration and maximum overlap has been studied. In addition, we have theoretically derived an expression for the minimum velocity under which the particle remains adhered to the surface (critical velocity) as a function of the cut-off distance. The simulation predictions of the critical velocity are within the range of experimental data published in the literature. We demonstrate that the cut-off distance has a profound influence on particle rebound and therefore, a careful selection of this parameter should take place when simulating bulk particle behaviour. Given that the hydrophobic force is usually simulated using the same expression as the van der Waals force, the results presented here could also be considered in the context of the simulation of the hydrophobic force.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,