Article ID Journal Published Year Pages File Type
235051 Powder Technology 2016 8 Pages PDF
Abstract

•A library of shear cell data was established.•The effects of the initial consolidation stress and the testing device were separated.•The yield loci from different initial consolidation stresses could be collapsed into a single material characteristic line.•The methods augment shear cell data analysis and significantly reduce the complexity of the shear cell data.

PurposeThe shear cell test has been widely used to characterize flow properties of powders and granular materials. The purpose of this study is to address the gap between the extensive usage of the test and the limited methods available to analyze the data, and to introduce methodologies for comparing results for different initial consolidation stresses, materials, and testing devices.MethodA library of shear cell data was established. Forty-one powders were included, and each material was tested under four different initial consolidation stresses. For each initial consolidation stress, 3 sampling replicates were performed.ResultsA dimensionless cohesion, C*, was defined as the cohesion divided by the initial consolidation stress. By identifying a correlation between the flow function coefficient (ffc) and C*, the effects of the initial consolidation stress and the testing device were separated. In addition, by identifying a mathematical correlation between the unconfined yield strength and the cohesion, the yield loci from different initial consolidation stresses could be collapsed into a single material characteristic line, enabling one to characterize each material by a single number (the characteristic slope). This approach can be used to economically compare different materials, or different testing devices.ConclusionThe proposed method augments shear cell data analysis and significantly reduces the complexity of the shear cell data.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,