Article ID Journal Published Year Pages File Type
238487 Powder Technology 2009 5 Pages PDF
Abstract

High shear granulation is a common technology for particle size enlargement, but generally the product properties are badly affected by the broad size distribution generated in the process. A recently published approach by Michaels et al. [J.N. Michaels, G. Wang, L. Farber, K.P. Hapgood, J.H. Chou, S. Heidel, and G.I. Tardos, 2006, One-dimensional scale-up of high-shear granulators, Paper 243c, World Congress Particle Technology 5, Orlando (FL)] employs low binder solution spray rates and long granulation times, whilst the solids are kept in roping flow, to avoid coarse formation. The present work applies this approach to a two-component binder system with a dry powder gum and water spray as activation agent. Similarities with fluidised bed granulation and coating processes are explored. The work shows that indeed narrow size distributions of fine granules can be achieved with ease. Dimensionless numbers for spray fluxes are useful to identify operating regimes and to steer optimisation efforts. Comparison of flux numbers for different systems shows that they are not useful (yet) for detailed product and process design. Further work on material-specific quantities controlling nucleation and growth, e.g. particle wetting, is recommended.

Graphical abstractOperating a high shear granulator using a roping flow and a low spray rate results in narrow size distributions, contrary to existing practice. Flux numbers can be used for basic characterisation and optimisation of such a system but not for detailed design for specific materials.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,