Article ID Journal Published Year Pages File Type
239794 Procedia Chemistry 2016 11 Pages PDF
Abstract

In this studies, 2 wt.% Mn-doped Zn2SiO4 were synthesized from SLS waste glass, ZnO and MnO using conventional solid-state method. Structural and optical properties were examined as functions of sintering temperature. Density and linear shrinkage of samples increased with increasing in sintering temperature. X-Ray Diffraction pattern revealed that sintering temperature play an important role in enhancing crystallization of Zn2SiO4. It was found that the phase formation changed from amorphous to ȕ- Zn2SiO4 and then to α-Zn2SiO4 with the unsintered to sinter at 600 °C and 700 °C respectively. The morphology under FESEM characterization shows that the samples become more uniform with rectangular shape like as the sintering temperature increased. From UV-Vis spectroscopy, the results obtained showed that the intensive absorption occurred in the UV region, in the range of 250-γλ0 nm. Prominent green emission colours of α-Zn2SiO4 were observed centred at 527 nm while the yellow emission centred at η8η nm resulted from ȕ-Zn2SiO at an excitation of 260 nm. However, red emission centred at 600 nm was observed for glass samples. These emissions come from the Mn-dopant and correspond to the 4T1 – 6A1 transition.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)