Article ID Journal Published Year Pages File Type
2403483 Vaccine 2011 13 Pages PDF
Abstract

Orally administered recombinant attenuated Salmonella vaccines (RASVs) elicit humoral and mucosal immune responses against the immunizing antigen. The challenge in developing an effective vaccine against a virus or an intracellular bacterium delivered by RASVs is to introduce the protective antigen inside the host cell cytoplasm for presentation to MHC-I molecules for an efficient cell mediated immune response. To target the influenza nucleoprotein (NP) into the host cell cytosol, we constructed a regulated delayed lysis in vivo RASV strain χ11246(pYA4858) encoding influenza NP with a chromosomal deletion of the sifA gene to enable it to escape from the endosome prior to lysis. Oral immunization of mice with χ11246(pYA4858) (SifA−) with 3 booster immunizations resulted in complete protection (100%) against a lethal influenza virus (rWSN) challenge (100 LD50) compared to 25% survival of mice immunized with the isogenic χ11017(pYA4858) (SifA+) strain. Reducing the number of booster immunizations with χ11246(pYA4858) from 3 to 2 resulted in 66% survival of mice challenged with rWSN (100 LD50). Immunization with χ11246(pYA4858) via different routes provided protection in 80% orally, 100% intranasally and 100% intraperitoneally immunized mice against rWSN (100 LD50). A Th1 type immune response was elicited against influenza NP in all experiments. IFN-γ secreting NP147–155 specific T cells were not found to be correlated with protection. The role of antigen-specific CD8+ T cells remains to be determined. To conclude, we showed that Salmonella can be designed to deliver antigen(s) to the host cell cytosol for presumably class I presentation for the induction of protective immune responses.

Related Topics
Life Sciences Immunology and Microbiology Immunology
Authors
, , , , ,