Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2405924 | Vaccine | 2009 | 8 Pages |
The present study was conducted mainly to evaluate the contribution of the cellular and the humoral responses in protection conferred by the MIC3 DNA vaccine (pMIC3i) that was proved as a potent vaccine against toxoplasmosis. We performed the adoptive transfer of CD4+ and CD8+ T lymphocytes from pMIC3i immunized mice to naive ones and the role of humoral immunity was evaluated by in vitro invasion assays. We also constructed plasmids encoding the EGF-like domains and the Lectin-like domain of MIC3, to define which domains of MIC3 are involved in the protection. Furthermore, the adjuvant effect of the GM-CSF-expressing vector (granulocyte-macrophage colony-stimulating factor) required the precise temporal and spatial codelivery of GM-CSF with antigen, thus, we constructed a bicistronic plasmid expressing MIC3 and GM-CSF. In conclusion, the protection induced by pMIC3i was mainly mediated by CD4+ and CD8+ T lymphocytes and both EGF and Lectin domains of MIC3 conferred protection. Furthermore, the codelivery of GM-CSF by a bicistronic plasmid appeared to be a most effective way for enhancing the adjuvant properties of GM-CSF.