Article ID Journal Published Year Pages File Type
240618 Proceedings of the Combustion Institute 2011 8 Pages PDF
Abstract

Large eddy simulation (LES) is applied to a pulverized coal jet flame ignited by a preheated gas flow. The simulation results are compared to experimental data obtained for the inlet stoichiometric ratios of 0.14, 0.22, and 0.36. An accurate and computationally inexpensive devolatilization model suitable for combustion simulation in LES is proposed and incorporated into the LES. The numerical results of gas temperature and coal burnout on the centerline show good agreement with the experimental data. Two kinds of lift-off heights are introduced to verify the combustion simulation. One is the height from the primary nozzle exit to the starting point of the growing flame region. The other is the height from the primary nozzle exit to the starting point of the continuous flame region. The calculated results of the two lift-off heights show good agreement with the experimental data. In contrast to LES, the standard k–ε model overestimates the lift-off heights because it calculates time-averaged temperature which does not contain information about local flame structure. The stoichiometric ratio in the gas phase at the starting point of the growing flame region is found to be independent of the inlet stoichiometric ratio in the range from 0.14 to 0.36.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,