Article ID Journal Published Year Pages File Type
2407212 Vaccine 2007 11 Pages PDF
Abstract

In this study, we tested the hypothesis that adoptive transfer of dendritic cells (DCs) transfected ex vivo with mRNA encoding hepatitis C virus (HCV) NS3/4A would initiate potent HCV-specific protective immune responses in vivo. Murine DCs were transfected with NS3/4A mRNA or eGFP mRNA using either electroporation or Transmessenger Transfection Reagent and then used for adoptive transfer. Electroporation resulted in higher transfection efficiency but lower levels of eGFP and NS3/4A expression when compared to transfection with Transmessenger. The murine NS3/4A mRNA-transfected DCs were functional in T cell activation in vitro. Adoptive transfer of NS3/4A mRNA-transfected DCs resulted in migration to regional lymph nodes, strong cellular immune responses and protection from challenge with vaccinia virus expressing NS3/NS4/NS5 in mice. Furthermore, although Transmessenger mediated transfection was less efficient than electroporation in terms of number of transfected cells, the DCs transfected with NS3/4A mRNA and Transmessenger expressed higher levels of protein and induced stronger immune responses and protection than DCs transfected with NS3/4A mRNA by electroporation. Since no study has explored the in vivo efficacy of mRNA-transfected DC-mediated vaccination against viral diseases, including hepatitis C, our study provided a novel vaccination strategy against hepatitis C as well as other pathogens.

Related Topics
Life Sciences Immunology and Microbiology Immunology
Authors
, , ,