Article ID Journal Published Year Pages File Type
2407326 Vaccine 2007 14 Pages PDF
Abstract

Porcine reproductive and respiratory syndrome virus (PRRSV) infection still remains today as the most significant health threat to swine and poses a challenge to current vaccination strategies. To develop a new generation of vaccine against PRRSV, a live attenuated pseudorabies virus (PRV) was used as vaccine vector to express the two major membrane-associated proteins (GP5 or M) of PRRSV in various forms. Four PRV recombinants, rPRV-GP5 (expressing native GP5), rPRV-GP5m (expressing GP5m, a modified GP5), rPRV-GP5-M (co-expressing GP5 and M proteins), rPRV-GP5m-M (co-expressing GP5m and M proteins) were generated. Mouse immunized with all these recombinants developed comparable PRV-specific humoral immune responses and provided complete protection against a lethal PRV challenge. However, the highest level of PRRSV-specific neutralizing antibodies and lymphocyte proliferative responses was observed in mice immunized with rPRV-GP5m-M. The immunogenicity and protective efficiency of rPRV-GP5m-M were further evaluated in the piglets. Compared to commercial PRRSV killed vaccine, detectable PRRSV-specific neutralizing antibody and higher lymphocyte proliferative responses could be developed in piglets immunized with rPRV-GP5m-M before virus challenge. Furthermore, more efficient protection against a PRRSV challenge was obtained in piglets immunized with rPRV-GP5m-M, as showed by the balanced body-temperature fluctuation, shorter-term viremia, lower proportion of virus load in nasal and oropharyngeal scrapings and tissues, and milder lung lesions. These data indicate that the recombinant rPRV-GP5m-M is a promising candidate bivalent vaccine against both PRV and PRRSV infection.

Related Topics
Life Sciences Immunology and Microbiology Immunology
Authors
, , , , , , , ,