Article ID Journal Published Year Pages File Type
240802 Proceedings of the Combustion Institute 2007 10 Pages PDF
Abstract

The stabilization and dynamics of an edge-flame in the corner region of two mutually perpendicular streams, one of fuel and the other of oxidizer, is studied within the context of a diffusive-thermal model, with an imposed flow satisfying the Navier–Stokes equations. The formulation allows for non-unity Lewis numbers and finite rate chemistry with an Arrhenius dependence on temperature. Two flow configurations, corresponding to inlet velocity profiles of uniform speed and of constant strain, have been examined. The results identify the dependence of the flame standoff distance on the flow as well as on the properties of the mixture, including the Damköhler D and Lewis numbers. For high flow rates, or small enough D, sufficient pre-mixing occurs in front of the edge-flame, which consequently takes on a tribrachial structure consisting of two premixed branches, one lean and one rich, with a trailing diffusion flame sheet. For large D, however, there is no enough premixing and the chemical reaction occurs in a small kernel very close to the corner, much like a local thermal explosion; further downstream the reaction occurs along a diffusion flame sheet that extends along the symmetry axis. The present results also predict the onset of spontaneous oscillations when the Lewis numbers are sufficiently large provided the flow rate is sufficiently high, or D reduced below a critical value. Oscillations are first sustained when D is reduced below criticality, but depending on the flow conditions, they are either damped leading to flame re-stabilization, or amplified leading to blow-off.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,