Article ID Journal Published Year Pages File Type
240915 Proceedings of the Combustion Institute 2005 8 Pages PDF
Abstract

This paper describes an experimental investigation of the feasibility of using “slow” active control approaches, which “instantaneously” change liquid fuel spray properties, to suppress combustion instabilities. The objective of this control approach was to break up the feedback between the combustion process heat release and combustor pressure oscillations that drive the instability by changing the characteristics of the combustion process (e.g., the characteristic combustion time). To demonstrate the feasibility of such control, this study used a proprietary fuel injector (NanomiserTM), which can vary its fuel spray properties, to investigate the dependence of acoustics–combustion process coupling, i.e., the driving of combustion instabilities, upon the fuel spray properties. This study showed that by changing the spray characteristics it is possible to significantly damp combustion instabilities. Furthermore, using combustion zone chemiluminescence distributions, which were obtained by Abel’s deconvolution synchronized with measured acoustic data, it has been shown that the instabilities were mostly driven midway between the combustor centerline and wall, a short distance downstream from the flame holder, where the mean axial flow velocity is approximately zero in the vortex near the flame holder. The results of this study strongly suggest that a “slow” active control system that employs controllable fuel injectors could be effectively used to prevent the onset of detrimental combustion instabilities.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,