Article ID Journal Published Year Pages File Type
240997 Proceedings of the Combustion Institute 2005 9 Pages PDF
Abstract

We examine the cellular instabilities of laminar non-premixed diffusion flames that arise in a polycrystalline alumina microburner with a channel wall gap of dimension 0.75 mm. Changes in the flame structure are observed as a function of the fuel type (H2, CH4, and C3H8) and diluent. The oxidizer is O2/inert. In contrast to previous observations on laminar diffusion flame instabilities, the current instabilities occur in the direction of flow above the splitter plate, and only occur for the heavier fuel types. They are not observed in a H2–O2 mixture, which will only support a continuous laminar flame inside our burner, regardless of the initial mixture strength and whether or not the flame is in near-quenching conditions. The only exception is when helium is added to the H2–O2 mixture, raising the effective Lewis numbers of both components.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,