Article ID Journal Published Year Pages File Type
2410835 Vaccine 2005 10 Pages PDF
Abstract

In the present study, we performed in silico analysis of Chlamydia pneumoniae genome sequence to identify human HLA-A2-restricted T cell epitopes. Thirty-one Chlamydia-specific protein antigens were selected and peptides were derived thereof using an HLA-A2 epitope predictive algorithm. Firstly, we tested binding of 55 selected 9mer peptides to HLA-A2 in vitro. Next, infection of HLA-A2 transgenic mice with C. pneumoniae elementary bodies and assessment of effector CD8+ T cells allowed us to identify which of the epitopes binding to HLA-A2 in vitro were recognized by C. pneumoniae infection-primed CD8+ T cells. Finally, we could confirm that CD8+ T cells in association with HLA-A2 recognized the most reactive peptides when the corresponding full-length genes were used to DNA-immunize HLA-A2 transgenic mice. By using this approach, a novel HLA-A2-restricted epitope in the outer membrane protein A (OmpA) of C. pneumoniae was identified, which proved to mediate specific lysis of peptide-loaded target cells.

Related Topics
Life Sciences Immunology and Microbiology Immunology
Authors
, , , , , , , , , ,