Article ID Journal Published Year Pages File Type
241207 Proceedings of the Combustion Institute 2013 8 Pages PDF
Abstract

3D structure and dynamical behavior of low-Lewis-number stretched premixed flames are numerically simulated within the framework of a thermo-diffusive model with one-step chemical reaction. The results are compared with microgravity experiments at qualitative level. The influence of Lewis number, equivalence ratio, and heat loss intensity on flame structure is investigated. It is experimentally and numerically found that lean counterflow flames can appear as a set of separate ball-like flames in a state of chaotic motion. It is shown that the time averaged flame balls coordinate may be considered as important characteristic similar to coordinate of continuous flame front. Numerical simulations reveal essential incompleteness of combustion at high level of heat losses. This incompleteness occurs in the process of lean mixtures combustion and is caused by fuel leakage through the gaps among ball-like flames.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , , , , ,