Article ID Journal Published Year Pages File Type
241247 Proceedings of the Combustion Institute 2007 8 Pages PDF
Abstract

An experimental investigation on the combustion behavior of nano-aluminum (nAl) and liquid water has been conducted. In particular, linear and mass-burning rates of quasi-homogeneous mixtures of nAl and liquid water as a function of pressure, mixture composition, particle size, and oxide layer thickness were measured. This study is the first reported self-deflagration on nAl and liquid water without the use of any additional gelling agent. Steady-state burning rates were obtained at room temperature (∼25 °C) using a windowed vessel for a pressure range of 0.1–4.2 MPa in an argon atmosphere, particle diameters of 38–130 nm, and overall mixture equivalence ratios (ϕ) from 0.5 to 1.25. At the highest pressure studied, the linear burning rate was found to be 8.6 ± 0.4 cm/s, corresponding to a mass-burning rate per unit area of 6.1 g/cm2 s. The pressure exponent at room temperature was 0.47, which was independent of the overall mixture equivalence ratio for all of the cases considered. The mass-burning rate per unit area increased from ∼1.0 to 5.8 g/cm2 s for an equivalence ratio range of 0.5–1.25. It varied inversely to particle diameter, increasing by 157% when the particle diameter was decreased from 130 to 50 nm at ϕ = 1.0.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,