Article ID Journal Published Year Pages File Type
241290 Proceedings of the Combustion Institute 2007 8 Pages PDF
Abstract

We report on numerical simulations of the evolution of two-dimensional detonation waves that are expanded from a small channel to a larger one. In accordance with experimental data, the simulations predict three different types of evolution, namely, supercritical, critical and subcritical detonations. In a supercritical detonation, the reaction zone remains always attached to the precursor shock, whereas in a critical one it temporarily detaches and then re-attaches to the front. In the subcritical type, the extinction is permanent, i.e., the detonation quenches. The effects of the fuel’s activation energy and the channel-width ratio are studied via a parametric study. It is found that sufficiently large values of these two parameters can result to flows of the critical and even the subcritical type. Finally, three-dimensional simulations have also been performed and are briefly discussed herein.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,