Article ID Journal Published Year Pages File Type
2436403 International Journal for Parasitology 2010 12 Pages PDF
Abstract

Cytidine diphosphate diacylglycerol synthase (CDS) diverts phosphatidic acid towards the biosynthesis of CDP-DAG, an obligatory liponucleotide intermediate in anionic phospholipid biosynthesis. The 78 kDa predicted Plasmodium falciparum CDS (PfCDS) is recovered as a 50 kDa conserved C-terminal cytidylyltransferase domain (C-PfCDS) and a 28 kDa fragment that corresponds to the unusually long hydrophilic asparagine-rich N-terminal extension (N-PfCDS). Here, we show that the two fragments of PfCDS are the processed forms of the 78 kDa pro-form that is encoded from a single transcript with no alternate translation start site for C-PfCDS. PfCDS, which shares 54% sequence identity with Plasmodium knowlesi CDS (PkCDS), could substitute for PkCDS in P. knowlesi. Experiments to disrupt either the full-length or the N-terminal extension of PkCDS indicate that not only the C-terminal cytidylyltransferase domain but also the N-terminal extension is essential to Plasmodium spp. PkCDS and PfCDS introduced in P. knowlesi were processed in the parasite, suggesting a conserved parasite-dependent mechanism. The N-PfCDS appears to be a peripheral membrane protein and is trafficked outside the parasite to the parasitophorous vacuole. Although the function of this unusual N-PfCDS remains enigmatic, the study here highlights features of this essential gene and its biological importance during the intra-erythrocytic cycle of the parasite.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (85 K)Download as PowerPoint slide

Related Topics
Life Sciences Immunology and Microbiology Parasitology
Authors
, , , , , , , , ,