Article ID Journal Published Year Pages File Type
2436896 International Journal for Parasitology 2006 9 Pages PDF
Abstract

Caenorhabditis elegans represents an excellent model in which to dissect the biosynthesis and assembly of the nematode cuticle. A sequenced genome, straightforward transgenesis, available mutants and practical genome-wide RNAi approaches provide an invaluable toolkit in the characterization of cuticle components. We have performed a targeted RNAi screen in an attempt to identify components of the cuticle collagen biosynthetic pathway. Collagen biosynthesis and cuticle assembly are multi-step processes that involve numerous key enzymes involved in post-translational modification, trimer folding, procollagen processing and subsequent cross-linking stages. For many of these steps, the modifications and the enzymes are unique to nematodes and may represent attractive targets for the control of parasitic nematodes. A novel serine protease inhibitor was uncovered during our targeted screen, which is involved in collagen maturation, proper cuticle assembly and the moulting process. We have confirmed a link between this inhibitor and the previously uncharacterised bli-5 locus in C. elegans. The mutant phenotype, spatial expression pattern and the over-expression phenotype of the BLI-5 protease inhibitor and their relevance to collagen biosynthesis are discussed.

Related Topics
Life Sciences Immunology and Microbiology Parasitology
Authors
, , ,