Article ID Journal Published Year Pages File Type
246024 Archives of Civil and Mechanical Engineering 2009 24 Pages PDF
Abstract

The paper presents a general outline of the method of stochastic response analysis of suspension bridge subjected to randomly fluctuated wind with time-dependent mean velocity. The proposed method is aimed to examine how the repeatable wind gusts affect bridge vibrations and to investigate amplified bridge response in resonant regimes. First, a non-homogeneous wind velocity model and associated buffeting forces are developed. The buffeting forces are derived under the general assumption that their span-wise correlation is the same as that of incoming wind fluctuations. Next, a bridge deck is divided into sections along span, and the dynamic bridge response is obtained with neglecting structure nonlinearities, by summing up component responses due to sectional buffeting forces. For the correlation response analysis an analytical time-domain approach based on stochastic calculus is suggested. The mean function and covariance function of bridge response are derived in the general case where in-time correlation of wind velocity fluctuations results from a given wind spectrum. Additionally, for a tentative estimation, two approximate formulas for variance of bridge response are obtained using two opposing mathematical idealizations of wind correlation in time. In the last part, numerical application of the proposed procedure is presented and advantages in bridge engineering are discussed.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
,