Article ID Journal Published Year Pages File Type
248767 Building and Environment 2011 9 Pages PDF
Abstract

Wind catcher as a natural ventilation system is increasingly used in modern buildings to minimize the consumption of non-renewable energy and reduce the harmful emissions. Height, cross section of the air passages and also place and the number of openings are the main factors which affect the ventilation performance of a wind catcher structure. In this study, experimental wind tunnel, smoke visualization testing and computational fluid dynamic (CFD) modeling were conducted to investigate ventilation performance of wind catchers with different number of openings to find how the number of opening affects hydrodynamic behavior of wind catchers. To achieve this particular aim, five cylindrical models with same cross section areas and same heights were employed. The cross sections of all these wind catchers were divided internally into various segments to get two-sided, three-sided, four-sided, six-sided and twelve-sided wind catchers. The experimental investigations were conducted in an open circuit subsonic wind tunnel. For all these five shapes, the ventilated air flow rate into the test room was measured at different air incident angles. Numerical solutions were used for all these five configurations to validate the proposed measuring techniques and the corresponding wind tunnel results. The results show that the number of openings is a main factor in performance of wind catcher systems. It also shows that the sensitivity of the performance of different wind catchers related to the wind angle decreases by increasing the number of openings. Moreover, comparing with a circular wind catcher a rectangular system provides a higher efficiency.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
,