Article ID Journal Published Year Pages File Type
2489061 Medical Hypotheses 2014 5 Pages PDF
Abstract

Atherosclerosis is a chronic, maladaptive, nonresolving inflammatory response which underlies the leading cause of death in the world today. During the process, macrophages play a central role in both the initiation and development stages of disease pathogenesis. MicroRNAs are a class of small non-coding RNAs that regulate almost all biological processes. MiR-155 is multi-target molecule specifically expressed in atherosclerotic plaques and pro-inflammatory macrophages. However, the effects of miR-155 on atherogenesis have been controversial. Several lines of evidence collectively indicated that, both as inducers and carriers of miR-155, LDL and its oxidized derivatives could modulate miR-155-mediated inflammatory and apoptotic responses in lesional macrophages at different stages of atherosclerosis. During early lesion formation, both native and mildly-oxidized LDL facilitated endogenous miR-155-mediated macrophage activation and recruitment. In the meantime, they may also increase the accumulation of exogenous LDL-bound miR-155, along with lipid intake and foam cell formation. During advanced stages, the levels of exogenous miR-155 and extensively-oxidized LDL could gradually increase and become highly enough to synergistically induce macrophage apoptosis and atheroma formation. Taken together, we hypothesized that native LDL and oxidized LDL played a key role in modulating the effects of miR-155 on macrophages at different stages of atherosclerosis.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Developmental Biology
Authors
, ,