Article ID Journal Published Year Pages File Type
2489092 Medical Hypotheses 2013 5 Pages PDF
Abstract

Microbial-based therapy of cancer is one of the earliest non-surgical anticancer therapies. The main limitation of such therapies is the toxicity of the therapeutic dose. This article discusses a novel approach that exploits cancer multidrug resistance (MDR) to provide a safer microbial-based therapy. As multidrug resistant cells can only contain limited amounts of a variety of susceptible drugs including certain antibiotics, we can take advantage of MDR to create a micro-environment (antibiotic free) that favors growth of intracellular bacteria within cancer cells. Thus, this approach targets cancer cells and spares normal cells (shielded by antibiotic): providing a more selective thus safer anticancer treatment. This article also explores the potentials of Chlamydia pneumoniae as an anti-cancer agent in this MDR-selective microbial-based therapy: its unique life cycle and the immune response to its infection suggest that it could be used directly, in the proposed approach, without any pre-requirements.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Developmental Biology
Authors
,